当前位置: 首 页 - 师资队伍 - 教授 - 正文

郭斌

发表于: 2017-11-30   点击: 


基本情况
姓名: 郭斌
  
性别:
职称: 教授
所在系别: 应用数学系
最高学历: 博士研究生
最高学位: 博士
Email:







详细情况
所在学科专业: 应用数学
所研究方向: 偏微分方程,流体力学
讲授课程: 2012.09-2013.01  数学分析I习题
2013.03-2013.07  数学分析II习题
2015.03-2015.07  常微分方程习题
2015.03-2015.07  调和分析
2015.09-2016.01  数学分析III习题
2016.09-2017.01  数学物理方程
教育经历: 2008.09-2012.07    bet356体育娱乐APP数学研究所   博士生              应用数学
2010.09-2011.09    美国密歇根州立大学   联合培养博士        应用数学
2006.09-2008.07    bet356体育娱乐APP数学研究所   硕士生              应用数学
2002.09-2006.07    BET体育365投注官网     本科生         数学与应用数学
工作经历: 2012.07-2015.09    BET体育365投注官网       讲师
2013.06-2015.08    中科院数学所         博士后

2015.10-2020.09    BET体育365投注官网       副教授

2020.09-至今      BET体育365投注官网       教授

科研项目: (1)国家自然科学基金 2014.01-2016.12,负责人
(2)吉林省青年基金 2015.01-2017.12 负责人
(3)博士后基金 2014.09-2015.07 负责人
(4)bet356体育娱乐APP基本科研业务费项目 2013.05-2015.02 负责人
学术论文: [1]Guo Bin,Gao Wen Jie, Study of weak solutions for parabolic equations with nonstandard growth conditions, J.Math.Anal.Appl., 374(2) (2011):374-384.(SCI)
[2]Guo Bin,Gao Wen Jie, Study of weak solutions for a Fourth-order parabolic equation with variable exponent of nonlinearity, Z. Angew. Math. Phys. 62 (2011), 909-926. (SCI)
[3]Gao Wen Jie,Guo Bin,Existence and localization of weak solutions of nonlinear parabolic equations with variable exponent of nonlinearity, Annali di Mate Pura ed Appli.191(3)(2012),551-562.(SCI)
[4]Gao Wen Jie,Guo Bin, Existence and asymptotic behavior of solutions for a viscous p(x)-Laplacian equation,Applicable Analysis, 91(5)(2012),879-894.(SCI)
[5]Guo Bin,Gao Wen Jie, Existence and asymptotic behavior of solutions for nonlinear parabolic equations with variable exponent of nonlinearity,  Acta Mathematica Scientia(Eng)32(3)(2012),1053-1062.(SCI)
[6]郭斌, 高文杰,一类拟线性退化抛物方程组初边值问题正解的存在性,数学学报(中文版),54(3)(2011):1-6.
[7]Guo Bin, Wei Yingjie, Gao Wenjie, Global and Blow-up solutions to a p-laplace equation with nonlocal source and nonlocal boundary condition, Communication, Math. Research, 26(3) (2010);280-288.
[8]宋文晶,郭斌,高文杰,具变指数的弱耦合抛物方程组解的爆破和全局存在性,数学物理学报(中文版),2013.33A(2):285-291.
[9]Wu Xiulan,Guo Bin Gao wenjie,Blow-up of solutions for a semilinear parabolic equation involving variable source and positive initial energy, Applied Math.letters,26(5)(2013):539-543.(SCI)
[10] Sun Lili,Guo Bin, Gao wenjie,A lower bound for the blow-up time to a damped semilinear wave, Applied Math.letters,37(2014):22-25.(SCI)
[11]Guo Bin, Gao wenjie,Blow-up of solutions to quasilinear hyperbolic equations with p(x,t)-laplacian operator and positive initial energy, C.R.Mecanique 342(2014)513-519.(SCI)
[12]Guo Bin, Gao wenjie,Non-extinction of solutions to a fast diffusive p-laplace equation with Neumann boundary conditions, J.Math.Anal.Appl.,422 (2015):1527-1531.(SCI)
[13]Guo Bin,Li,yajuan, Gao Wen Jie, Singular Phenomena of Solutions for Nonlinear Diffusion Equations involving p(x)-Laplace operator and Nonlinear Sources, Z. Angew. Math. Phys. 66(3) (2015): 989-1005. (SCI)
[14]Guo Bin, Gao Wen Jie,Finite-time blow-up and extinction rates of solutions to an initial Neumann problem involving the p(x,t)-Laplace operator and a non-local term,Disc.Cont.Dyn. Sys. 36(2)(2016):715-730. (SCI)
[15]Guo Bin, Liu Fang, A lower bound for the blow-up time to a viscoelastic hyperbolic equation with nonlinear sources, Applied Math.letters,60(2016):115-119.(SCI)
[16]Guo Bin, Gao Wen Jie, Blow-up of solutions to quasilinear parabolic equations with singular absorption and a positive initial energy, Mediterranean J. Math.13(2016):2853-2861.(SCI)
座右铭: 学习,再学习,努力,再努力