当前位置: 首 页 - 师资队伍 - 副教授 - 正文

王秀丽

发表于: 2020-05-30   点击: 

姓名:

王秀丽


性别:

职称:

副教授

所在系别:

计算数学系

最高学历:

博士研究生

最高学位:

博士

Email

xiuli19@jlu.edu.cn



详细情况

所在学科业:

计算数学

所研究方向:

偏微分方程数值解

讲授课程:

数学分析习题课

教育经历:

2016年09月-2019年07月 BET体育365投注官网 博士

201309-201607 BET体育365投注官网 硕士

200809-201207 太原师范学院 学士

工作经历:

2022年09月-至今            BET体育365投注官网 副教授

202112-2022年09月 BET体育365投注官网 讲师

201911-202112 bet356体育娱乐APP计算机科学与技术学院 博士后

科研项目:

1. 国家自然科学基金青年科学基金项目,流体耦合问题和界面问题的高效新型数值算法,2021.01-2023.12,在研,主持

学术论文:

[10] Zhou, Huifang; Wang, Xiuli; Jia, Jiwei Discrete maximum principle for the weak Galerkin method on triangular and rectangular meshes. J. Comput. Appl. Math. 402 (2022), Paper No. 113784, 22 pp. (Reviewer: Beny Neta) 65N30 (65N12 65N50)

[9] Wang, Xiuli; Liu, Yuanyuan; Zhai, Qilong The weak Galerkin finite element method for solving the time-dependent Stokes flow. Int. J. Numer. Anal. Model. 17 (2020), no. 5, 732–745. 65M60 (35Q30 65M12 65M15 76D07)

[8]Wang, Xiuli; Zhai, Qilong; Zhang, Ran; Zhang, Shangyou The weak Galerkin finite element method for solving the time-dependent integro-differential equations. Adv. Appl. Math. Mech. 12 (2020), no. 1, 164–188. 65M60 (65M12 65M15)

[7]Wang, Xiuli; Zou, Yongkui; Zhai, Qilong An effective implementation for Stokes equation by the weak Galerkin finite element method. J. Comput. Appl. Math. 370 (2020), 112586, 8 pp. (Reviewer: Nasserdine Kechkar) 65N30 (65N15 76D07)

[6]Wang, Ruishu; Zhang, Ran; Wang, Xiuli; Jia, Jiwei Polynomial preserving recovery for a class of weak Galerkin finite element methods. J. Comput. Appl. Math. 362 (2019), 528–539. 65N30 (35B45 35J25 65N12 65N15)

[5]Zhang,Qianru; Kuang,Haopeng; Wang,Xiuli; Zhai,Qilong A hybridized weak Galerkin finite element method for incompressible Stokes equations. Numer. Math. Theory Methods Appl. 12 (2019), no. 4, 1012–1038. 65N30 (65N12 76D07)

[4] Peng, Hui; Wang, Xiuli; Zhai, Qilong; Zhang, Ran A weak Galerkin finite element method for the elliptic variational inequality. Numer. Math. Theory Methods Appl. 12 (2019), no. 3, 923–941. (Reviewer: Boualem Alleche) 65K15 (35J87 65N30)

[3] Wang, Xiuli; Zhai, Qilong; Wang, Xiaoshen A class of weak Galerkin finite element methods for the incompressible fluid model. Adv. Appl. Math. Mech. 11 (2019), no. 2, 360–380. 65N30 (65N15 76D07 76M10)

[2] Wang, Xiuli; Zhai, Qilong; Wang, Ruishu; Jari, Rabeea An absolutely stable weak Galerkin finite element method for the Darcy-Stokes problem. Appl. Math. Comput. 331 (2018), 20–32. 65N30 (35B45 35J50 35Q35 65N15 76D07)

[1]Wang, Xiuli; Zhai, Qilong; Zhang, Ran The weak Galerkin method for solving the incompressible Brinkman flow. J. Comput. Appl. Math. 307 (2016), 13–24. (Reviewer: Gheorghe Procopiuc) 65N30 (65N15 76D07 76M10 76S05)



上一篇: 王翔

下一篇: 王瑞姝